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PLASTIC YIELD AND REVERSE YIELD WAVES GENERATED
BY IMPULSIVE ELECTROMAGNETIC RADIATIONt

L. w. MORLANDt

University of California, San Diego, La Jolla, California

Abstract-Absorption of radiation through a thin layer adjacent to an irradiated, stress free, surface causes rapid
heating and the generation of stress waves. Temperature rises sufficient to cause plastic yielding in the initial
stress jump and reverse yielding during the subsequent wave propagation are considered under the assumption
of uni-axial strain. An elastic~plasticwave solution is constructed and compared with the purely elastic solution.
In particular the reduced compressive and tensile stresses in the outgoing wave, and the pulse spread, are
illustrated.

1. INTRODUCTION

THE generation of stress waves by rapid, non-uniform, heating of a solid (or fluid) due to
the penetration and absorption of electromagnetic radiation through a surface layer is
now of practical interest. See, for example, recent wave investigations by Gournay [IJ
who uses dyes in a fluid to vary the absorption depth and hence the resulting pulse length
and stress amplitudes. In materials partially transparent to optical frequencies, significant
stress levels can be attained by the use of Q-switched lasers from which the radiation
duration is of order 10- 8 sec, For absorption depths greater than 10- 1 cm (say) the total
energy is absorbed before any appreciable propagation from the absorption layer takes
place, and the initial stress rise is effectively instantaneous, Furthermore, on the time
scale of wave propagation over several absorption depths the subsequent thermal diffusion
is negligible, and if thermomechanical coupling is neglected the temperature may be
assumed steady; alternatively, if coupling is included, adiabatic response may be assumed.
The impulsive heating limit followed by steady temperature considerably simplifies the
wave analysis, and was adopted by Morland [2] to demonstrate the main wave features in a
linear thermoelastic material, and subsequently by Hegemier and Morland [3J for a
thermal-viscoelastic material. In each case uni-axial displacement and a stress-free surface
were considered, and both compressive and tensile stresses occur in the outgoing wave.

Assuming the possibility of similar absorption in metals at other frequency levels
and with sufficient energy deposit to produce an initial stress rise initiating yield, an
elastic-plastic analysis was presented by Morland [4]. Estimates of the required surface
temperature rise were made on the basis of quasistatic, room temperature, yield data;
but in turn such wave generation may provide measures of the yield stress for high rates
of strain and rapid temperature rise. The solution [4J was restricted to an intermediate
range of initial stress rise for which yield occurs, but not reverse yield. Here the wave
analysis is extended to include a reverse yield region which forms away from the surface

t The results presented in this paper were obtained in the course of research sponsored under Contract No.
NOOOI4-67-A-0109-0003, Task NR 064-496 by the Office of Naval Research, Washington, D.C.
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if the initial (surface) stress rise exceeds the minimum level for yield by a factor 2 (assuming
equal tensile and compressive yield stress). In consequence both compressive and tensile
parts of the outgoing pulse attenuate.

Referring to [4J for the detailed formulation, a summary of the governing equations
is now presented. Uni-axial displacement normal to the surface, u(x, t), is assumed, where
x denotes particle distance from the surface in the undeformed configuration and t denotes
time. The temperature T, initially zero, has an instantaneous rise T(x) at t = 0 due to the
impulsive heating and then remains steady during the propagation times considered.
Initially the material is stress free and, while the strain remains zero at t = 0, there is an
instantaneous elastic build-up of isotropic pressure given by

O'(x,O+) = O'IJX,O+) = -3KaT(x), (1.1)

where 0', O'L denote respectively the principal (Cauchy) longitudinal and lateral stress
components, K is the bulk modulus, and a is the coefficient of linear thermal expansion.
The result (1.1) is trivially modified if K and:x are functions of T. Further, the stress rate is
continuously zero at t = 0 [2J, so that

c!(J
l-(x, 0+) = O.
d

(1.2)

Subsequent elastic changes at a fixed particle x, at steady temperature T(x), satisfy the
longitudinal differential relation

d(J 4
--=K+-G
de: 3'

( 1.3)

where G is the shear modulus and e is the single non-zero longitudinal strain measuring
extension per unit current length.

Both the von Mises and Tresca yield criteria reduce to

(J-(JL = ±y(T), (1.4)

where the yield stress in simple tension, y, is allowed to depend on temperature. Typical
work-hardening dependence is shown by Morland [5J to make little contribution in this
stress geometry, and is neglected. It is unlikely that the significant quasistatic dependence
on temperature observed after long exposure [6J is reproduced within the wave travel times
of order 10- 6 sec, and while a dependence is allowed in the formal solution the examples
presented assume constant y. Adjoining the postulate of plastic incompressibility leads
to the longitudinal plastic relation at steady temperature:

dO'
de = K, (1.5)

together with the positive plastic work requirement

(J - (JL = ±y ...... d(J z O. (1.6)

The positive sign condition is designated as yield, and the negative sign condition as
reverse yield, for descriptive convenience. Figure 1 shows the longitudinal stress-strain
path for a particle at steady temperature T, where A denotes the state following the initial
instantaneous stress build-up, and the moduli K, G are assumed constant. The one-way
direction of the yield path QB and reverse yield path CD is indicated by the arrows, and
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o
FIG. I. Longitudinal stress-strain path at steady temperature T.

the elastic stress range between the two yield paths is

[a] (K +jG)yjG. (1.7)

(1.8)

With the assumption of constant moduli K, G, and the small strain approximation

au
e = -;;;-,

ox

the momentum equation reduces in continuous elastic and plastic regions to the wave
equations

(i = 1,2).

Co and CI are respectively the elastic and plastic wave speeds given by

PC6= K +1G, pd K( < PC6),

(1.9)

(I.l0)

where p is the initial uniform density. Finally, with a further postulate for instantaneous
changes of state made by Morland and Cox [7], elastic and plastic stress discontinuities
propagate with the speeds Co and Cl respectively, and in particular a jump embracing both
elastic and plastic changes splits into its separate parts.

2. WAVE PATTERN

First define dimensionless distance and time coordinates ~, '1 by

(2.1)

where 1 is a measure of the absorption depth. Then the steady temperature distribution,
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assumed to decrease monotonically to zero with depth, takes the form

E(~) -+ ° as ~ -+ CXJ.

Next define dimensionless stress O(~, 1]), and effective yield stress Y(~), by

a = aMO, (K +jG)y = 2GaM Y; aM = 3Kr:xTM .

The initial and boundary conditions then become

E(O) = -1, E(~) < 0, E'(~) > 0;
(2.2)

(2.3)

O(~,°+) = E(~),
00
~~(~, 0+) = 0;
U1]

and the initial yield points P, R in Fig. 1 are given by

0(0,1]) = 0; (2.4)

(2.5)

To achieve certain analytic conclusions we make the further postulates

E"(~) S 0, E"'(~) 2': 0, E'(~) -+ ° as ~ -+ CXJ, (2.6)

which are satisfied by the example E(~) = -e-' used in the illustrations. In addition,
from the common static observations [6J y'(T) S 0, y"(T) S 0, it follows that

Y'(~) 2': 0, Y"(OsO; Y'W -+ ° as ~ -+ CXJ. (2.7)

In the new coordinates the elastic and plastic wave speeds are respectively

(2.8)

Across elastic and plastic stress discontinuities the jump conditions are respectively

[VJ = -[OJ, [VJ = - [OJ/c, (2.9)

where the dimensionless particle velocity V is defined by

V = pCo OU
aM ot'

and in continuous regions

(2.1 0)

(2.11)

Examination of the elastic solution [2J shows that, if Y(O) < 1, yield occurs at 0,
Fig. 2, behind the elastic characteristic OD, leading to a separation of the tensile jump
into elastic and plastic parts propagating along OD, OA respectively. The solution con­
structed in [4J, and illustrated by several examples, showed that yield did not occur at
any particle ~ until reached by the plastic tensile jump propagating along GA, and
subsequent to that jump the stress unloaded monotonically to zero. Thus, with the
exception of the discontinuity path OA, the entire (~, 1]) domain was governed by the
elastic equations. However, it was noted that if Y(O) < 0'5, reverse yield may, or may
not, occur in the domain LOD, and certainly does if Y(CXJ) < 0,5, and attention was
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restricted to the intermediate range 0·5 S Y(O) < I. We will now consider a surface stress
rise (JM such that

Y(O) s Y(oo) < 0·5. (2.12)

With the postulates (2.6) it was shown [4J that reverse yield must first occur at some
point R, Fig. 2, at the particle ~R' on the characteristic OD, ahead of the tensile jump,
and subsequently a continuous elastic-plastic interface path RP is formed. Continuous
interfaces of all six possible types are discussed in detail in [7]. Provided that the inter­
face speed is not less than unity (the elastic wave speed), then classified as a super-fast
elastic-plastic interface, the interface condition on RP is simply that the stress is at the
initial reverse yield point for each particle ~, represented by the point R in Fig. 1. Denoting
the path RP by Yf = 'P(~) and using the known elastic solution in LORP, it follows that

E[~+'P(~)J+E[~-'P(~)J= 2E(c;)-2Y(~), (2.13)
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FIG. 2. Influence domains in the ¢, " plane; stress discontinuity paths shown -, continuous elastic­

plastic interface paths shown ---------.
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which is an implicit equation for eR and 'I'(e). The postulates (2.6) guarantee [4] that
'I"R) ~ 0, and further, from the result

'I"(e) = 1-2{E'R)-E'[e+'I'(e)]- y'(m
E'(e- '1'(e)] - E'(e+'I'R)] ,

(2.14)

that 'I"(e) ~ 1 if Y'(e) = o. It may still follow if y'(T) < 0, but it is clear that if Y increases
too rapidly with ea particle is reached beyond which the reverse yield condition cannot
be attained by the stress distribution in LOD. We assume conditions are such that the
required inequality,

'I"(e) ~ 1.

holds, trivial for constant Y.
In the later examples,

(2.15)

(2.13) has the explicit solution

'I'(~) = cosh - 1 {I + Ye~}.

which has the properties

Y = constant,

~R = -log{1-(2y)i}.

(2.16)

(2.17)

o< 'I"(~) < I, tp"(~) > 0, tp'(~) --> I as ~ --> CD. (2.18)

These will be used to confirm results when general conclusions cannot be drawn.
There is a reverse yield domain PRDM, Fig. 2, in which each particle follows its path

RD, Fig. I, necessarily in the unloading (arrow) sense to meet the plastic work require­
ment (1.6). In this domain plastic waves formed on RP propagate in both directions, and
continuity of stress and particle velocity across RP determines both wave functions;
general conclusions regarding the unloading requirement will be obtained. Since a tensile
jump propagates along the elastic characteristic OR, elastic reloading up a path DQ,
Fig. 1, takes place discontinuously on RD, where D represents a point at which the dis­
continuity is supposed to be annulled. It is shown that for some range of Y satisfying (2.12)
the discontinuity is not annulled in a finite distance. The wave pattern in Fig. 2 assumes
that continuous elastic changes take place beyond OD until the plastic tensile jump path
OA is reached, that is, remaining within the section DQ, Fig. 1, analogous to the solution [4]
when reverse yield does not occur. The domain ORH is not influenced by the reverse
yield waves.

At OA, ahead of the plastic discontinuity, the stress is at local yield, represented by the
initial yield point P, Fig. 1, for ~ ~ ~R, but by the appropriate point Q for ~ ~ ~R' since
reverse yield has previously occurred to the point D. Thus

{
E(~)+ Y(~),

O-(~, ~/c) =
O-(~, ~)+2Y(~),

(2.19)

where (J- denotes stress ahead of a discontinuity. Relating the elastic stress and particle
velocity jumps across OD, using (2.9), determines the stress jump ~e(~), and the backward
elastic wave function in DOA, where the condition (2.19) determines the forward elastic
wave generated at (reflected from) the slower plastic discontinuity. Finally, the jump
relation across OA and boundary condition (2.4) on ~ = 0 determine the plastic stress
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jump A,.(~) and the forward and backward elastic wave functions in the domain OAB,
in which the stress is supposed to remain below yield. The solution behind the elastic
jump is thus determined to the left ofDTcontinued. Overall validity ofthis pattern rests on
numerical solutions for individual examples.

It is shown that the plastic jump annullment point A occurs at a finite distance ~A'

though not necessarily to the left of DT, as shown in Fig. 2, for all Y. When the elastic
jump is annulled at a finite distance ~D' it is shown that the subsequent plastic-elastic
interface cannot continue along the elastic characteristic OD extended, and further, that
for some initial conditions E(O, YR), reverse yield continues to take place behind this
characteristic, so that the interface must then follow a path DM as shown, slower than the
elastic wave speed. For other initial conditions it may be faster than the elastic wave
speed. The present solution is not extended beyond D. In the situation shown there is an
expanding region of reverse yield, as RP and DM move further apart, but there the stress
approaches a uniform level at the initial reverse yield stress and the plastic work approaches
zero.

3. SOLUTION AND ILLUSTRATIONS

The formal solution is constructed by expressing the stress in the various influence
domains of the ~,,, plane, Fig. 2, by appropriate pairs of wave functions. These are plastic
in the reverse yield domain PRD, and elsewhere elastic except on the elastic and plastic
discontinuity paths OD, OA respectively, across which the jump conditions (2.9) must be
satisfied. Thus, after satisfying the initial and boundary conditions (2.4), the stress 0 is
given as follows:

LORP: !ER+,,)+!ER-,,).

PRD: OR+f(~-C11)+g(e+C"),

DOAN: k(,,-~)+l(~+,,).

OAB: jR +,,)- j(,,-~).

(3.1)

(3.2)

(3.3)

(3.4)

OR denotes the stress at R ahead of the elastic discontinuity. The stress in other domains
is given by extending the appropriate wave functions continuously across the domain
boundaries, but only to the left of DT continued for" > ~ if ~D is finite.

Applying the reverse yield condition on RP,

(3.5)

and continuity of particle velocity, determines the two wave functions f, g:

f[e;-c'JI(e;)] = ic{t +E[e;-'JI(e;)]}+!(t -c){E(e)- Y(e;)-OR}, (3.6)

g[e; + c'JI(e;)] = -!c{ 1+ E[e; - 'JI(e;)]} +!(1 + c){ E(e;)- Y(c;) - OR}. (3.7)

Differentiating (3.6), (3.7) and rearranging shows that

E'[e;-'JI(e;)]-2f'[e;-c'JI(O] = (t -c){E'[~-'JI(e;)]-E'W+Y'(e;)} 0 (3.8)
1- c'JI'(e;) ~
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(3.9)

(3.13)

(3.14)

(3.15)

on using the inequalities (2.18), (2.2), (2.6) and (2.7). Next differentiating (3.7),

n~-c'¥(~)J- '[~+c'¥(~)] = c{I-'¥'(~)}{E'[~-'¥(~)J-E'(~)+Y'(~)} > 0
. g {1-c'¥'(m {I +c'¥'(~)} - .

Further differentiation of (3.6) gives

2{I-c'¥'(~Wr[~-c'¥(~)J = -c'¥"(~){E,[~-'¥(~)J-2f'[~-c'¥(~)]}

+c{l-'¥'(~WE"[~ '¥(~)]

+(l-c){E"(~)- Y"(~)}. (3.10)

It follows from (2.13) that a necessary condition for '¥"(~) ::2: 0 is E"(<;) - Y"(~) S 0, trivially
satisfied if Y':(<;) 0 and otherwise imposing restrictions on y'(T), y"(T), so that in view
of (3.8)

'¥"(~) ::2: 0 -. r(~) s O. (3.11)

Recall that '11"(<;) ::2: 0 for the examples (2.16). For <;, I] in the domain PRD,

1ao
-;- = - f'(~ - CI])+ g'(<; +CIJ)

C tllJ

S 1'(<; -cIJ)+f'(<1», (3.12)

for some <1> ::2: <; - CI], using (3.9), and hence aO/ol] S 0, as required to satisfy the unloading
condition, when the implication (3.11) holds. Always

1 ao
-;-[<;, '¥(~)] = -f'[<;-e'¥(~)J+gT<;+c'¥(<;)] sO.

e UIJ

Relating the stress and particle velocity jumps across OD gives

Ae(~) Y(O), /(2<;) = iE(2<;), <; s ~R

Ae(~) = Y(O)-{(l +e)f[(l-c)~]-(l-c)g[(l+e)<;]}/2c,

/(2<;) iE(2<;R)+ {(l +c)g[(l +c)<;] - (l c)f[(l- e)<;]}/2e,

where Ae{<;) and 1(2~) are continuous at ~ = <;n. The two domains for /(<; + IJ) are separated
by the characteristic RG. Now for <; ::2: <;n.

A~W = - (I - e2
){ f'[( 1- e)~] - g'[(1+c)e]} /2e, s 0

for a valid plastic solution (3.12), and

(3.16)

AA~) -. Y(O) + Y((0) as e-. iX. (3.17)

Thus the condition for a finite ev at which Ae(ev) 0 is

ev < 00 +=± Y(O) + Y(oo) < 0·5. (3.18)

and <;v -. 00 if Y(O) + Y((0) ::2: 0·5. In the case Y = const. the critical value is Y = 0·25.
Since the reverse yield solution is valid ahead of the elastic characteristic OD continued
if(3.11) holds, independent of the position ev, the continuation of the plastic-elastic inter­
face path beyond a finite (D must then be behind this characteristic, as represented by DM.
Continuous interface conditions and solutions are discussed in detail in [7J; the present
solution is not extended beyond D. However, it follows from (3.6), (3.7), using the postulate
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(2.6), that within PRDM
ae/alJ ~ 0 as ~ ~ 00 (3.19)

so that at each ~ the stress approaches the initial local reverse yield point for all IJ and
no plastic work is done.

Using the yield condition (2.19) on OA, ahead of the plastic discontinuity, gives

k[(1-c)~/cJ = O-(~, ~/c)-l[(1 +c)~/c]. (3.20)

(3.22)

(3.21)

Dependence on the prior reverse yield enters through I beyond GS, and through 0- beyond
KW since the local yield point depends on the previous reverse yield stress for ~ > ~R'

Now relating stress and particle velocity jumps across the plastic discontinuity path OA
determines a difference equation for j:

j(z)-bj(bZ) = G(z), z ?: 0

z = (1 + c)~/c, b = (1- c)/(1 + c),

G(z) = bO-(~, ~/c)+(1-b)l(z)+i(1 +b)-bY(O).

For a typical value c = 0,8, b ~ I and the solution of (3.21) is simply a few terms of the
iterated series

.JJ

j(z) = L brGWz).
r= 0

(3.23)

Also the plastic stress jump is given by

~p(~) = G(Z)-(~ -b)j(Z) -e-(~, ~/c). (3.24)

As ~ ~ 00, e-(~, ~/c) ~ Y(oo) and (I-b)j(z)-G(z) ~ 0, so

~p(O) = 1- Y(O) > 0, ~p(~) ~ - Y( 00) < 0 as ~ ~ 00, (3.25)

and there exists a finite ~A at which ~p first becomes zero. For ~ < ~A' ~p(~) > 0 and the
plastic discontinuity meets the validity requirement (1.6). Validity beyond OA requires
that the stress remains below the last plastic stress e+(~, ~/c) behind the discontinuity OA
for ~ ::;; ~A' and for ~ > ~A below the yield stress e-(~, ~)+2Y(~). Confirmation is obtained
in the numerical examples where, in fact, monotonic unloading takes place. The general
properties of j(z) deduced in [4J when no reverse yield occurs still apply in the domain
OGH, in particular j"(z) ::;; 0 which implies monotonic unloading.

Solutions are now presented for the examples (2.16) with various values of Ysatisfying
(2.12) and c = 0·8. The following table lists the respective ~R' where reverse yield first
occurs, ~D where the elastic discontinuity is annulled, and ~A where the plastic discontinuity
is annulled if this occurs, as represented in Fig. 2, in the solution domain bounded by DT.
Also the location ~F and duration of reverse yield, ~F - 'P(~F)' when the slope 'P'(~) becomes
effectively unity; both clearly increases with decrease of Y. This increase in reverse yield

y eR en

0·1 0·59 1·90
0·15 0·79 2·95
0·2 1·00 4·30
0·25 J'23 00

0·3 J'49 00

5-45
4·35

eF er'J'(eF)

3·00 1·61
2-88 1·20
2·49 0·92
2·32 0·69
2·27 0·51
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FIG. 3. Stress variation with time" at ~ = 2; elastic case (e) and plastic cases Y = 0,5, 0-3,0-25,0-2.

duration is accompanied by a faster attenuation ofthe elastic discontinuity and ~D decreases.
The reverse trend is indicated for the annullment distance ~A of the plastic (tensile) dis­
continuity, to which may be added the results [4] ~A = 1'98, Y = 0'5; ~A = 0'96, Y = 0·75.

A comparison of the stress pulse at ~ = 2 for various values of Y, including the case
Y = 0-5 [4], and the elastic solution [2], is shown in Fig. 3. Here the elastic pulse has
effectively attained its final tensile and compressive amplitudes ±0·5 (at the discontinuity),
and the plastic tensile discontinuity for Y = 0·5 is annulled. Attenuation of the com­
pressive stress ahead of the elastic discontinuity with decrease of Y below 0·5, due to
reverse yield, is indicated, together with the different shape of loading beyond the elastic

8

0.4

0.2

0

-0.2

-04

-0.6

6."

FIG. 4. Stress variation with time '1 at ~ = I. 2, 3. 4; Y = 0·25.
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discontinuity, still including the final plastic discontinuity for the values of Y below 0·5.
The final (monotonic) unloading beyond" = ~/c is nearly identical for all the cases shown.

Figure 4 shows the stress pulse at locations ~ = 1,2,3,4 for Y = 0·25. The tensile
stress behind the plastic discontinuity in fact increases from zero at ~ = 0 to a maximum
0·38 at ~ = 1·4 and then decreases to the value 0·22 at ~A = 5·45. The compressive stress
ahead of the elastic discontinuity decreases monotonically from - 1 at ~ = 0 to a steady
value -0·25 by ~ = 10. That is, both tensile and compressive amplitudes are eventually
much lower than the levels ±0·5 of the elastic solution, and there is the loading-pulse
spread between " = ~ and ~/c in contrast to the totally discontinuous loading of the
elastic solution. The maximum tensile stress is little affected by the reverse yield region,
and for all the values of Yconsidered occurs between ~ = 1·3 and 1·5 and has magnitude
approximately 0·38. Thus the significant effect is the attenuation in the ultimate outgoing
wave beyond (say) ten absorption depths where the backward signals are negligible.
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AOCTpaKT-A6copnWUI1I paLlHaUlISl CKB03b TOHKHH CJlOH, I1pllMbIKalOwHH K 06J1y'leHHOH H cB060LlHOH OT
HanplDKeHHH nOBepXHOCTH, Bbl3blBaeT 6blCTPblH HarpeB 1I 06pa30BaHHe BOJIH HanpsDKeHHlI. VICCJleLlycTca
nOBblweHHe TeMnepaTypbl, LlOCTaTO'lHOe LlJllI 06pa30BaHHlI ITJIaCTH'leCKOrO Te'leHlI'lI, B Ha'laJle CKa'lKli
HanpsDKeHHH H 06pa30BaHHlI 06paTHoro Te'leHHlI, BO BpeMli 110cJleLlYlOwero paCl1pOCTpaHeHHlI BOJlHbI,
npeLll10JlaraSi OLlHOOCHYIO Lle<!J0pMaUHIO. )J,aeTcli peweHHe yl1pyro-l1J1aCTH'leCKOH BOJlHbI H cpaBHHBaeTcli C
'lHCTO ynpyrHM peweHlIeM. B Ka'leCTBe oc060ro CJly'lalI, HJlJlIOCTPHPYIOTCSI peLlYUHpoBaHHble HanplilKeHHlI
C)lffiTHSI H paCTSIJKeHHlI B HCX03'lllleH BOJlHe, a TaKJKe pacnpocTpaHeHHe HMnyJlbca.


